منابع مشابه
$sigma$-Connes Amenability and Pseudo-(Connes) Amenability of Beurling Algebras
In this paper, pseudo-amenability and pseudo-Connes amenability of weighted semigroup algebra $ell^1(S,omega)$ are studied. It is proved that pseudo-Connes amenability and pseudo-amenability of weighted group algebra $ell^1(G,omega)$ are the same. Examples are given to show that the class of $sigma$-Connes amenable dual Banach algebras is larger than that of Connes amenable dual Banach algebras.
متن کاملMultiplicativity properties of entrywise positive maps
Multiplicativity of certain maximal p → q norms of a tensor product of linear maps on matrix algebras is proved in situations in which the condition of complete positivity (CP) is either augmented by, or replaced by, the requirement that the entries of a matrix representative of the map are non-negative (EP). In particular, for integer t, multiplicativity holds for the maximal 2 → 2t norm of a ...
متن کاملOn a Generalized Connes -
The central result here is an explicit computation of the Hochschild and cyclic homologies of a natural smooth subalgebra of stable continuous trace algebras having smooth manifolds X as their spectrum. More precisely, the Hochschild homology is identified with the space of differential forms on X, and the periodic cyclic homology with the twisted de Rham cohomology of X, thereby generalizing s...
متن کاملOn the multiplicativity conjecture for quantum channels
A multiplicativity conjecture for quantum communication channels is formulated, validity of which for the values of parameter p close to 1 is related to the solution of the fundamental problem of additivity of the channel capacity in quantum information theory. The proof of the conjecture is given for the case of natural numbers p.
متن کامل$varphi$-Connes amenability of dual Banach algebras
Generalizing the notion of character amenability for Banach algebras, we study the concept of $varphi$-Connes amenability of a dual Banach algebra $mathcal{A}$ with predual $mathcal{A}_*$, where $varphi$ is a homomorphism from $mathcal{A}$ onto $Bbb C$ that lies in $mathcal{A}_*$. Several characterizations of $varphi$-Connes amenability are given. We also prove that the follo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Reviews in Mathematical Physics
سال: 2019
ISSN: 0129-055X,1793-6659
DOI: 10.1142/s0129055x19500338